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1 Interior Regularity

We want to prove the following:

Theorem 1. Let k > 0 be an integer and p € (0,1). Let Q be an open set in R". Suppose
u € C*(Q) satisfies ) .
Lu = a"Diju+b"Diu+ cu = f in 2
for some elliptic operator L with coefficients a” b',c € C**(Q) and some f € C**(Q). Then
u € CP21(Q) with
|ulkr2mer < Clluloer + [flkme) (1)

for every Q" CC 2 CC Q for some constant C = C(n, k,pu, L,Q, Q") € (0,00).

Moreover, if Lu = f in Q for some elliptic operator L with coefficients a™,b',c € C=(Q) and
some f € C®(Q), then u € C*(Q).

The proof shall proceed by induction on k.

Step 1: Show that if a¥ b ¢, f € C**(Q), then u € C?(£2) implies that u € C*#(£2). This follows
from the existence theory. Let y € ©Q and B,(y) CC 2. Consider solutions v to

a”’ Diju+b'Div = f — cu in B,(y),
v =wuon 0B,(y). (2)
We know that w is a solution to (2) in C°(B,(y)) N C?*(B,(y)). By the existence theory for solu-
tions to the Dirichlet problem, there exists a solution v € C°(B,(y)) N C*#(B,(y)) to (2). Since

there is at most one solution to (2) in C°(B,(y)) N C*(B,(y)), we conclude that v = v. Hence
u € C2(B,(y).

Step 2: Show that if @, V%, ¢, f € C'*(Q), then u € C**(Q) implies that v € C*#(2). We do this
using a difference quotient argument. Let Q" CcC Q" cc @ cC Q. Consider [ € {1,2,...,n}
and h > 0 such that dist(2”,0Q") < h and dist(2”,0Q") < h. We define the difference quotient
operator d;, taking a function g : 2 — R to the function ;9 : 2" — R defined by

g(x + her) — g()
h )

Sing(w) =



where ey, €9, .. ., e, denotes the standard basis for R". Note that by applying d;; to both sides of
Lu = f in Q, we get

L0 pu) = Sinf(z) — 6ppa” (2) Diju(z + hey) — 00" (2) Dyu(z + hep) — dppe(z)u(z + hey) on Q.

Now observe that

1 h
—/ sz(chrtez)dt’ <sup |D,f|
h Jo o

sup |f5z,hf($)| = Sup
zEQ zeQ

and for z,y € O,

h
5 0) = 600 = |5 [ (D14 000 = Difty + ] < (Duflfe = o

Therefore |6l7hf|07“;Q// < |le|0“u;Q/. Slmllarly |6l’hu|0;gﬂ < ’DZU|O;Q/, |(Sl’h(lij|0,u;gﬂ < |Dlaij|0,m91,
100100 < | Dibo s |01nclo o < |Diclouor. By the Schauder estimates

|01l < C|0nuloer + |0upulower + 101007 o,uer | Digu(w + her)|o o
+ |00 o, | Diru( + her)fo o + u(z + her)louor)
< C(|1Dyulogr + | Dyulo e + 1 Dia” o e | D*ulo ey
+ ’lei’07u;9’|Du‘0,u;Q’ + [ Diclower [ulowmer)
for some constant C' = C'(n, u, L, Q2" ,Q") € (0, 00); in other words,

|00, nul2,u0m < Clulg o

for some constant C' = C(n, u, L,Q", ") € (0,00). By Arzela-Ascoli, there is a sequence h; | 0
such that 6, ,,u converges in C? (W) But since u is continuously differentiable on €2, 6;,,u — Dyu
uniformly on Q. Therefore 6 ,,u — Dyu in C*Q") and Dyu € C*#(Q"). Note that Q" is an
arbitrary open set compactly contained in €. Consequently u € C3#(€).

Step 3: Show that for k > 2, if a¥ b c, f € C**(Q), then u € C*1#(Q) implies that u €
Ck21(Q). Let |a| = k — 1 and observe that by applying D® to both sides of Lu = f in €,

L(D%) = D°f — Z@ Dﬂ 0¥ DP D;ju + D°~*b'DP Dyu + D?~*cDPu) in (,
B<a
where for a = (o, 9,...,ap) and 5 = (51, P2,...,0n), B < a means that §; < «; for all i =
1,2,...,nand §; < a; forsomei € {1,2,...,n}. Since a”, b, c, f € C*+(Q), D> Pai, D*Pp D*Fc
C#(Q) whenever 3 < « and D°f € C'(Q). Therefore L(Du) € C"“*(Q2). By Step 2,
D%y € C3#(Q)). Consequently u € C*+2#(Q)).

Step 4: (1) follows inductively from the standard interior Schauder estimate. We shall leave this
as an exercise to the reader.

Note that the above difference quotient argument is a very general type of argument and the
same sort of argument will apply in the cases of global regularity and Sobolev solutions to elliptic
equations in divergence form. The key ingredients is a Schauder estimate and having difference
quotients the necessary properties for the difference quotient argument to work. In particular, we
used:



(a) an interior Schauder estimate for solutions in C%*,
(b) the difference quotient operator d;;, such that
(1) &, is well-defined,

(ii) the norm of difference quotients d; ¢ are uniformly bounded by the norm of the deriva-
tive Dyg for every function g, i.e. |6 19lour < |Digloer whenever g € CH#(Q) and
Q" cc Q cc Q with dist(Q”,0Q') > h, and

(iii) the convergence of the difference quotients ;g to the derivative Dyg, i.e. if g € CO*(Q)
satisfies SUPg|pj<p, [089]0,u0m < 00 for some hg > 0 and Q" CC €, then &9 — Dig
uniformly on ” and thus D;g € CO*(Q").

2 Global Regularity

We want to prove the following:

Theorem 2. Let k > 0 be an integer and p € (0,1). Let Q2 be a bounded Ck+ domain in R™.
Suppose u € C*(Q) satisfies

Lu = aijDiju + b Diu+ cu= f in Q,
u =@ on OS2,

for some elliptic operator L with coefficients a’, bl c € CPH(Q), some f € C**(Q), and some
© € C*21(Q). Then u € C*21(Q) with

|u‘k+2,/1«;9 S C(|U‘O,Q + ‘flk,,u,;Q + |90|k+2,,u;Q)

for some constant C' = C'(n, k, u, L,Q2) € (0,00).
Moreover, if Lu = f in Q and u = ¢ on 0Q for a smooth domain §2, some elliptic operator L
with coefficients a’ b, c € C(Q) and some functions f,o € C®(Q), then u € C>(R).

Note that we already know that u € C**2#(Q), so the issue is establishing u € C**?# near
and up to the boundary of Q. Our approach will be to locally establish u € C¥*2# near and up
to the boundary of 2. Consequently, our approach actually proves the following, though we will
focus on the proof of Theorem 2.

Theorem 3. Let k > 2 be an integer and p € (0,1). Let Q be an open set in R™ and let T' be a
C*# portion of OQ (i.e. for everyy € T, there is a ball B,(y) and straightening diffeomorphism
¢ : B,(y) = ®(B,(y)) € R™ such that 0Q N B,(y) = T N B,(y), ®(Q2 N B,(y)) € R} and
O(T N B,(y)) CR* 1 x{0}). Suppose u € C*(QUT) satisfies

Lu = a”"Djju+b'Diu+cu= f in Q,
u=p onT,
for some elliptic operator L with coefficients a¥,b',c € C**(QUT), some f € C**(QUT), and
some p € CKY2(QUT). Then u € C*21(QUT).
Moreover, if Lu = f in Q and uw = ¢ on T for an open set €2, smooth portion T of 0S), some

elliptic operator L with coefficients a”,b',c € C*°(QUT) and some functions f,o € C*(QUT),
then u e C*(QUT).



The proof of Theorem 2 proceeds by induction on k and is similar to the proof of Theorem 1.

Step 1’: Show that if Q is a C** domain, a¥, V', c, f € C**(Q), and ¢ € C**(Q), then u € C*(Q)
implies that u € C?#(Q). In particular, we will show that if 5 € 9Q and T is a neighborhood of y
in 09 that is C*#, then w is in C** up to the boundary of 2 near v.

Choose neighborhood 1" of y in 99 with 7" CC T and a small C** domain D C  such that
T C 0D and D is small enough that there exist at most one solution ' to the Dirichlet problem

Lu' = f"in D,
u' = ¢ on 0D (3)

for each f' € C°(D) and ¢’ € C°(9D). By the Fredholm Alternative, there exists a unique solution
u' € C**(D) to (3) for each f' € CO*(D) and ¢’ € C**(D).

Pick a domain D' with D CC D’ and a small ball B = B,(y) with B CCC D', BNoQ = BNT",
and BNQ = BN D. Consider xy = ulpp € C*(OD) N C**(T") and extend x to a function in
C%(D"YNC?*(B). Use convolution to approximate x by xi € C*°(D’) such that y; — x uniformly
on D, |xxlo.p < Clxlo.p, and |X|2,:5 < Clx|2...5 for some constant C' € (0, 00) independent of k.
Let u;, € C?#(D) be the solution to

Lup = fin D,
U = Xk on 0D.

We claim that by the maximum principle, interior Schauder estimates, and Schauder estimates
at the boundary near y, u; converges to some fug:tion v uniformly on D, in C? on compact subsets
of D, and in C*(Q2 N B,(y)) such that v € C°(D)NC**(D)NC** (2N B,2(y)) and w = v solves

Lw= fin D,
w =y on dD. (4)

Since w = u also solves (4), it follows that u = v and thus u € C*™(Q N B,/2(y)), as required.
To establish the convergence of uy, first observe that by the maximum principle,

lur, — wilo.o < |xx — Xilo.0Ds

so uy, is Cauchy in C°(D) and uy, converges to some function v in C°(D). By the interior Schauder
estimates,

k2,00 < C(Ixkloop + | flogsp)
< C(’X|O;D + |f’0,u;9)

for all D" CC D for some constant C' € (0, 00) independent of k, so after passing to a subsequence
ur — v in C? on compact subsets of D and v € C?*#(D). By the Schauder estimates near the
boundary,

C(lxlo.op + | flowp + IXkl2,m008)
C<|X|0§6D + 1 + |f|0,,U«;D + |X|2,,u,;B>7

|uk|27u;QﬂBp/2(y) <
<



for some constant C € (0, oo)_independent of k, so after passing to a subsequence up — v in
C?*(Q2N B,2(y)) and v € C**(Q N B,2(y)).

Step 2’: Show that if Q is a O domain, ",V ¢, f € CH(Q), and ¢ € C3*(Q), then u €
C?*#(Q) implies that u € C**(Q). Let y € 9Q. First we use a C*# straightening diffeomorphism
¢ : B,(y) = (B,(y)) € R" such that

QN B,(y) TRy ®(9QN B,(y) R x {0},

Assume without loss of generality that B;(0) CC ®(B,(y)). Let & = uo®~!, f = fod~! and
@ =po® ! on Bi(0). Recall that u satisfies

Li = @? Dy + V' Dyti + &t = f in By (0),
¢ on By 71(0) x {0},

U

where L is an elliptic operator with some coefficients a¥,b",é € C**(B;(0)). Now using the
Schauder estimates on half-balls instead of the interior Schauder estimates we can use the same
difference quotient from Step 2 for the interior estimates to get Dji € C*#(B; ) ,(0)) for all [ =

1,2,...,n. However, the difference quotient 4, in the direction orthogonal to B} *(0) x {0} is not
well- deﬁned on B /2(0), so we cannot use difference quotients to show that D,u € 02’“(Bf/ 4(0)).

Thus we observe the following. Since D;i € C%#(B7,,(0) 1/4(0)) fori=1,2,. — 1, then

Dy;ii € CY*(BF,(0) 54(0) ford,j =1,2,...,n — 1,
Dinii € CY¥ (B, (0) 14(0)) fori=1,2,...,n — 1.

Thus it remains to show that D,,, i € 017“(Bl+/4( ). Since Lii = f in By (0) and L is elliptic,

1 - g L S
Dppii=—— | f— Y a@'Dyi—» VDji—ci| € C*(B],(0)).
=1

L
i,j7#(n,n)

Step 3’: Show that for k > 4, if Q is a C*# domain, a”,b',c, f € CkH(Q), ¢ € CF21(Q)), then
u € CHLA(Q) implies that u € C*2#(Q). This follows from Step 2’ exactly like with interior
regularity.

Step 4’: (1) follows inductively from the standard global Schauder estimate and is nearly identical
to Step 4 for interior regularity.

References: Gilbarg and Trudinger, Section 6.4



