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1 Interior Regularity

We want to prove the following:

Theorem 1. Let k ≥ 0 be an integer and µ ∈ (0, 1). Let Ω be an open set in Rn. Suppose
u ∈ C2(Ω) satisfies

Lu = aijDiju+ biDiu+ cu = f in Ω

for some elliptic operator L with coefficients aij, bi, c ∈ Ck,µ(Ω) and some f ∈ Ck,µ(Ω). Then
u ∈ Ck+2,µ(Ω) with

|u|k+2,µ;Ω′′ ≤ C(|u|0;Ω′ + |f |k,µ;Ω′) (1)

for every Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω for some constant C = C(n, k, µ, L,Ω′,Ω′′) ∈ (0,∞).
Moreover, if Lu = f in Ω for some elliptic operator L with coefficients aij, bi, c ∈ C∞(Ω) and

some f ∈ C∞(Ω), then u ∈ C∞(Ω).

The proof shall proceed by induction on k.

Step 1: Show that if aij, bi, c, f ∈ C2,µ(Ω), then u ∈ C2(Ω) implies that u ∈ C2,µ(Ω). This follows
from the existence theory. Let y ∈ Ω and Bρ(y) ⊂⊂ Ω. Consider solutions v to

aijDijv + biDiv = f − cu in Bρ(y),

v = u on ∂Bρ(y). (2)

We know that u is a solution to (2) in C0(Bρ(y)) ∩ C2(Bρ(y)). By the existence theory for solu-

tions to the Dirichlet problem, there exists a solution v ∈ C0(Bρ(y)) ∩ C2,µ(Bρ(y)) to (2). Since

there is at most one solution to (2) in C0(Bρ(y)) ∩ C2(Bρ(y)), we conclude that u = v. Hence
u ∈ C2,µ(Bρ(y)).

Step 2: Show that if aij, bi, c, f ∈ C1,µ(Ω), then u ∈ C2,µ(Ω) implies that u ∈ C3,µ(Ω). We do this
using a difference quotient argument. Let Ω′′′ ⊂⊂ Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω. Consider l ∈ {1, 2, . . . , n}
and h > 0 such that dist(Ω′′′, ∂Ω′′) < h and dist(Ω′′, ∂Ω′) < h. We define the difference quotient
operator δl,h taking a function g : Ω→ R to the function δl,hg : Ω′′ → R defined by

δl,hg(x) =
g(x+ hel)− g(x)

h
,
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where e1, e2, . . . , en denotes the standard basis for Rn. Note that by applying δl,h to both sides of
Lu = f in Ω, we get

L(δl,hu) = δl,hf(x)− δl,haij(x)Diju(x+ hel)− δl,hbi(x)Diu(x+ hel)− δl,hc(x)u(x+ hel) on Ω′′.

Now observe that

sup
x∈Ω′′
|δl,hf(x)| = sup

x∈Ω′′

∣∣∣∣1h
∫ h

0

Dlf(x+ tel)dt

∣∣∣∣ ≤ sup
Ω′
|Dlf |

and for x, y ∈ Ω′′,

|δl,hf(x)− δl,hf(y)| =
∣∣∣∣1h
∫ h

0

(Dlf(x+ tel)−Dlf(y + hel))dt

∣∣∣∣ ≤ [Dlf ]µ|x− y|µ.

Therefore |δl,hf |0,µ;Ω′′ ≤ |Dlf |0,µ;Ω′ . Similarly |δl,hu|0;Ω′′ ≤ |Dlu|0;Ω′ , |δl,haij|0,µ;Ω′′ ≤ |Dla
ij|0,µ;Ω′ ,

|δl,hbi|0,µ;Ω′′ ≤ |Dlb
i|0,µ;Ω′ , |δl,hc|0,µ;Ω′′ ≤ |Dlc|0,µ;Ω′ . By the Schauder estimates

|δl,hu|2,µ;Ω′′′ ≤C(|δl,hu|0;Ω′′ + |δl,hu|0,µ;Ω′′ + |δl,haij|0,µ;Ω′′ |Diju(x+ hel)|0,µ;Ω′′

+ |δl,hbi|0,µ;Ω′′ |Diu(x+ hel)|0,µ;Ω′′ + |δl,hc|0,µ;Ω′′|u(x+ hel)|0,µ;Ω′′)

≤C(|Dlu|0;Ω′′ + |Dlu|0,µ;Ω′′ + |Dla
ij|0,µ;Ω′|D2u|0,µ;Ω′

+ |Dlb
i|0,µ;Ω′ |Du|0,µ;Ω′ + |Dlc|0,µ;Ω′ |u|0,µ;Ω′)

for some constant C = C(n, µ, L,Ω′′′,Ω′′) ∈ (0,∞); in other words,

|δl,hu|2,µ;Ω′′′ ≤ C|u|2,µ;Ω′

for some constant C = C(n, µ, L,Ω′′′,Ω′′) ∈ (0,∞). By Arzela-Ascoli, there is a sequence hj ↓ 0
such that δl,hju converges in C2(Ω′′′). But since u is continuously differentiable on Ω, δl,hju→ Dlu

uniformly on Ω′′′. Therefore δl,hju → Dlu in C2(Ω′′′) and Dlu ∈ C2,µ(Ω′′′). Note that Ω′′′ is an
arbitrary open set compactly contained in Ω. Consequently u ∈ C3,µ(Ω).

Step 3: Show that for k ≥ 2, if aij, bi, c, f ∈ Ck,µ(Ω), then u ∈ Ck+1,µ(Ω) implies that u ∈
Ck+2,µ(Ω). Let |α| = k − 1 and observe that by applying Dα to both sides of Lu = f in Ω,

L(Dαu) = Dαf −
∑
β<α

α!

β!(β − α)!
(Dβ−αaijDβDiju+Dβ−αbiDβDiu+Dβ−αcDβu) in Ω,

where for α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn), β < α means that βi ≤ αi for all i =
1, 2, . . . , n and βi < αi for some i ∈ {1, 2, . . . , n}. Since aij, bi, c, f ∈ Ck,µ(Ω), Dα−βaij, Dα−βbi, Dα−βc ∈
C1,µ(Ω) whenever β < α and Dαf ∈ C1,µ(Ω). Therefore L(Dαu) ∈ C1,µ(Ω). By Step 2,
Dαu ∈ C3,µ(Ω). Consequently u ∈ Ck+2,µ(Ω).

Step 4: (1) follows inductively from the standard interior Schauder estimate. We shall leave this
as an exercise to the reader.

Note that the above difference quotient argument is a very general type of argument and the
same sort of argument will apply in the cases of global regularity and Sobolev solutions to elliptic
equations in divergence form. The key ingredients is a Schauder estimate and having difference
quotients the necessary properties for the difference quotient argument to work. In particular, we
used:
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(a) an interior Schauder estimate for solutions in C2,µ,

(b) the difference quotient operator δl,h such that

(i) δl,h is well-defined,

(ii) the norm of difference quotients δl,hg are uniformly bounded by the norm of the deriva-
tive Dlg for every function g, i.e. |δl,hg|0,µ;Ω′′ ≤ |Dlg|0,µ;Ω′ whenever g ∈ C1,µ(Ω) and
Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω with dist(Ω′′, ∂Ω′) > h, and

(iii) the convergence of the difference quotients δl,hg to the derivative Dlg, i.e. if g ∈ C0,µ(Ω)
satisfies sup0<|h|<h0 |δl,hg|0,µ;Ω′′′ < ∞ for some h0 > 0 and Ω′′′ ⊂⊂ Ω, then δl,hg → Dlg
uniformly on Ω′′′ and thus Dlg ∈ C0,µ(Ω′′′).

2 Global Regularity

We want to prove the following:

Theorem 2. Let k ≥ 0 be an integer and µ ∈ (0, 1). Let Ω be a bounded Ck,µ domain in Rn.
Suppose u ∈ C2(Ω) satisfies

Lu = aijDiju+ biDiu+ cu = f in Ω,

u = ϕ on ∂Ω,

for some elliptic operator L with coefficients aij, bi, c ∈ Ck,µ(Ω), some f ∈ Ck,µ(Ω), and some
ϕ ∈ Ck+2,µ(Ω). Then u ∈ Ck+2,µ(Ω) with

|u|k+2,µ;Ω ≤ C(|u|0;Ω + |f |k,µ;Ω + |ϕ|k+2,µ;Ω)

for some constant C = C(n, k, µ, L,Ω) ∈ (0,∞).
Moreover, if Lu = f in Ω and u = ϕ on ∂Ω for a smooth domain Ω, some elliptic operator L

with coefficients aij, bi, c ∈ C∞(Ω) and some functions f, ϕ ∈ C∞(Ω), then u ∈ C∞(Ω).

Note that we already know that u ∈ Ck+2,µ(Ω), so the issue is establishing u ∈ Ck+2,µ near
and up to the boundary of Ω. Our approach will be to locally establish u ∈ Ck+2,µ near and up
to the boundary of Ω. Consequently, our approach actually proves the following, though we will
focus on the proof of Theorem 2.

Theorem 3. Let k ≥ 2 be an integer and µ ∈ (0, 1). Let Ω be an open set in Rn and let T be a
Ck,µ portion of ∂Ω (i.e. for every y ∈ T , there is a ball Bρ(y) and straightening diffeomorphism
Φ : Bρ(y) → Φ(Bρ(y)) ⊆ Rn such that ∂Ω ∩ Bρ(y) = T ∩ Bρ(y), Φ(Ω ∩ Bρ(y)) ⊆ Rn

+ and
Φ(T ∩Bρ(y)) ⊆ Rn−1 × {0}). Suppose u ∈ C2(Ω ∪ T ) satisfies

Lu = aijDiju+ biDiu+ cu = f in Ω,

u = ϕ on T,

for some elliptic operator L with coefficients aij, bi, c ∈ Ck,µ(Ω ∪ T ), some f ∈ Ck,µ(Ω ∪ T ), and
some ϕ ∈ Ck+2,µ(Ω ∪ T ). Then u ∈ Ck+2,µ(Ω ∪ T ).

Moreover, if Lu = f in Ω and u = ϕ on T for an open set Ω, smooth portion T of ∂Ω, some
elliptic operator L with coefficients aij, bi, c ∈ C∞(Ω ∪ T ) and some functions f, ϕ ∈ C∞(Ω ∪ T ),
then u ∈ C∞(Ω ∪ T ).

3



The proof of Theorem 2 proceeds by induction on k and is similar to the proof of Theorem 1.

Step 1’: Show that if Ω is a C2,µ domain, aij, bi, c, f ∈ C0,µ(Ω), and ϕ ∈ C2,µ(Ω), then u ∈ C2(Ω)
implies that u ∈ C2,µ(Ω). In particular, we will show that if y ∈ ∂Ω and T is a neighborhood of y
in ∂Ω that is C2,µ, then u is in C2,µ up to the boundary of Ω near y.

Choose neighborhood T ′ of y in ∂Ω with T ′ ⊂⊂ T and a small C2,µ domain D ⊂ Ω such that
T ′ ⊂ ∂D and D is small enough that there exist at most one solution u′ to the Dirichlet problem

Lu′ = f ′ in D,

u′ = ϕ′ on ∂D (3)

for each f ′ ∈ C0(D) and ϕ′ ∈ C0(∂D). By the Fredholm Alternative, there exists a unique solution
u′ ∈ C2,µ(D) to (3) for each f ′ ∈ C0,µ(D) and ϕ′ ∈ C2,µ(D).

Pick a domain D′ with D ⊂⊂ D′ and a small ball B = Bρ(y) with B ⊂⊂⊂ D′, B∩∂Ω = B∩T ′,
and B ∩ Ω = B ∩ D. Consider χ = u|∂D ∈ C0(∂D) ∩ C2,µ(T ′) and extend χ to a function in
C0(D′)∩C2,µ(B). Use convolution to approximate χ by χk ∈ C∞(D′) such that χk → χ uniformly
on D, |χk|0;D ≤ C|χ|0;D, and |χk|2,µ;B ≤ C|χ|2,µ;B for some constant C ∈ (0,∞) independent of k.
Let uk ∈ C2,µ(D) be the solution to

Luk = f in D,

uk = χk on ∂D.

We claim that by the maximum principle, interior Schauder estimates, and Schauder estimates
at the boundary near y, uk converges to some function v uniformly on D, in C2 on compact subsets
of D, and in C2(Ω ∩Bρ/2(y)) such that v ∈ C0(D)∩C2,µ(D)∩C2,µ(Ω ∩Bρ/2(y)) and w = v solves

Lw = f in D,

w = χ on ∂D. (4)

Since w = u also solves (4), it follows that u = v and thus u ∈ C2mu(Ω ∩ Bρ/2(y)), as required.
To establish the convergence of uk, first observe that by the maximum principle,

|uk − ul|0;D ≤ |χk − χl|0;∂D,

so uk is Cauchy in C0(D) and uk converges to some function v in C0(D). By the interior Schauder
estimates,

|uk|2,µ;D′′ ≤ C(|χk|0;∂D + |f |0,µ;D)

≤ C(|χ|0;D + |f |0,µ;Ω)

for all D′′ ⊂⊂ D for some constant C ∈ (0,∞) independent of k, so after passing to a subsequence
uk → v in C2 on compact subsets of D and v ∈ C2,µ(D). By the Schauder estimates near the
boundary,

|uk|2,µ;Ω∩Bρ/2(y) ≤ C(|χ|0;∂D + |f |0,µ;D + |χk|2,µ;Ω∩B)

≤ C(|χ|0;∂D + 1 + |f |0,µ;D + |χ|2,µ;B),
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for some constant C ∈ (0,∞) independent of k, so after passing to a subsequence uk → v in
C2(Ω ∩Bρ/2(y)) and v ∈ C2,µ(Ω ∩Bρ/2(y)).

Step 2’: Show that if Ω is a C1,µ domain, aij, bi, c, f ∈ C1,µ(Ω), and ϕ ∈ C3,µ(Ω), then u ∈
C2,µ(Ω) implies that u ∈ C3,µ(Ω). Let y ∈ ∂Ω. First we use a C3,µ straightening diffeomorphism
Φ : Bρ(y)→ Φ(Bρ(y)) ⊆ Rn such that

Φ(Ω ∩Bρ(y)) ⊆ Rn
+, Φ(∂Ω ∩Bρ(y)) ⊆ Rn−1 × {0}.

Assume without loss of generality that B1(0) ⊂⊂ Φ(Bρ(y)). Let ũ = u ◦ Φ−1, f̃ = f ◦ Φ−1, and
ϕ̃ = ϕ ◦ Φ−1 on B1(0). Recall that ũ satisfies

L̃ũ = ãijDijũ+ b̃iDiũ+ c̃ũ = f̃ in B+
1 (0),

ũ = ϕ̃ on Bn−1
1 (0)× {0},

where L̃ is an elliptic operator with some coefficients ãij, b̃i, c̃ ∈ C1,µ(B+
1 (0)). Now using the

Schauder estimates on half-balls instead of the interior Schauder estimates we can use the same
difference quotient from Step 2 for the interior estimates to get Dlũ ∈ C2,µ(B+

1/4(0)) for all l =

1, 2, . . . , n. However, the difference quotient δn,h in the direction orthogonal to Bn−1
1 (0)×{0} is not

well-defined on B+
1/2(0), so we cannot use difference quotients to show that Dnũ ∈ C2,µ(B+

1/4(0)).

Thus we observe the following. Since Diũ ∈ C2,µ(B+
1/4(0)) for i = 1, 2, . . . , n− 1, then

Dijũ ∈ C1,µ(B+
1/4(0)) for i, j = 1, 2, . . . , n− 1,

Dinũ ∈ C1,µ(B+
1/4(0)) for i = 1, 2, . . . , n− 1.

Thus it remains to show that Dnnũ ∈ C1,µ(B+
1/4(0)). Since L̃ũ = f̃ in B+

1 (0) and L̃ is elliptic,

Dnnũ =
1

ãnn

f̃ − ∑
i,j 6=(n,n)

ãijDijũ−
n∑
i=1

b̃iDiũ− c̃ũ

 ∈ C1,µ(B+
1/4(0)).

Step 3’: Show that for k ≥ 4, if Ω is a Ck,µ domain, aij, bi, c, f ∈ Ck,µ(Ω), ϕ ∈ Ck+2,µ(Ω), then
u ∈ Ck+1,µ(Ω) implies that u ∈ Ck+2,µ(Ω). This follows from Step 2’ exactly like with interior
regularity.

Step 4’: (1) follows inductively from the standard global Schauder estimate and is nearly identical
to Step 4 for interior regularity.

References: Gilbarg and Trudinger, Section 6.4
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